Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase.
نویسندگان
چکیده
An 11-residue peptide with the sequence DSLEFIASKLA was identified from a genomic library of Bacillus subtilis by phage display as an efficient substrate for Sfp phosphopantetheinyl transferase-catalyzed protein labeling by small molecule-CoA conjugates. We name this peptide the "ybbR tag," because part of its sequence is derived from the ybbR ORF in the B. subtilis genome. The site of Sfp-catalyzed ybbR tag labeling was mapped to the underlined Ser residue, and the ybbR tag was found to have a strong tendency for adopting an alpha-helical conformation in solution. Here we demonstrate that the ybbR tag can be fused to the N or C termini of target proteins or inserted in a flexible loop in the middle of a target protein for site-specific protein labeling by Sfp. The short size of the ybbR tag and its compatibility with various target proteins, the broad substrate specificity of Sfp for labeling the ybbR tag with small-molecule probes of diverse structures, and the high specificity and efficiency of the labeling reaction make Sfp-catalyzed ybbR tag labeling an attractive tool for expanding protein structural and functional diversities by posttranslational modification.
منابع مشابه
Labeling proteins with small molecules by site-specific posttranslational modification.
We report here the development of a general strategy for site-specific labeling of proteins with small molecules by posttranslational modification enzyme, phosphopantetheinyl transferase Sfp. The target proteins are expressed as fusions to the peptide carrier protein (PCP) excised from nonribosomal peptide synthetase, and Sfp catalyzes the covalent modification of a specific serine residue on P...
متن کاملCrystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily.
The Bacillus subtilis Sfp protein activates the peptidyl carrier protein (PCP) domains of surfactin synthetase by transferring the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to a serine residue conserved in all PCPs. Its wide PCP substrate spectrum renders Sfp a biotechnologically valuable enzyme for use in combinatorial non-ribosomal peptide synthesis. The structure of the Sfp-CoA compl...
متن کاملPhagemid encoded small molecules for high throughput screening of chemical libraries.
A new strategy for monovalently displaying small molecules on phage surfaces was developed and applied to high throughput screening for molecules with high binding affinity to the target protein. Peptidyl carrier protein (PCP) excised from nonribosomal peptide synthetase was monovalently displayed on the surface of M13 phage as pIII fusion proteins. Small molecules of diverse structures were co...
متن کاملCloning and characterization of a phosphopantetheinyl transferase from Streptomyces verticillus ATCC15003, the producer of the hybrid peptide-polyketide antitumor drug bleomycin.
BACKGROUND Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of carrier proteins by the covalent attachment of the 4'-phosphopantetheine (P-pant) moiety of coenzyme A to a conserved serine residue, a reaction absolutely required for the biosynthesis of natural products including fatty acids, polyketides, and nonribosomal peptides. PPTases have been classifie...
متن کاملLegionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase
Several members of the genus Legionella cause Legionnaires' disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 44 شماره
صفحات -
تاریخ انتشار 2005